

Identifying and Correcting the Gas Matrix Effects on a Cavity Ring-Down Water Stable Isotope Analyzer

Benjamin Gralher^{1)*)}, Barbara Herbstritt¹⁾, Markus Weiler¹⁾, Leonard I. Wassenaar²⁾, Christine Stumpp³⁾

Motivation

Laser-based water stable isotope analyzers have enabled new experimental approaches, e.g. in situ observations in the soil-plant-atmosphere continuum.

Thereby, these analyzers will occasionally be subjected to inhomogeneous background gas matrices between different samples and/or in comparison with calibration standards, the effect of which was to be investigated.

Experimental Setups

- Flash-evaporation and analysis of a continuous stream of identical water
- Stepwise change of carrier gas matrix in environmental relevant ranges

- Repeated analysis of soil sample headspace vapor over the course of 4 weeks
- Prevention of diffusional vapor loss due to metalized sampling bags

Correction Procedure

We used the strong linear correlations between carrier gas changes, isotope readings, and the co-recorded line width-rela-

ted variable $h2o_y_eff_a$ (all $R^2 > 0.99^{[1]}$; R^2 up to 0.98, only for air inflation^[2]). Raw isotope readings were corrected using the

following equation where $\mathbf{m} = \Delta \delta_i / \Delta h 2o_y = eff_a$ and the control variable i refers to the different isotope ratios:

 $\delta_{i,corrected} = \delta_{i,observed} - m_i \times (h2o_y_eff_a_{observed} - h2o_y_eff_a_{reference})$

Isotope data flawed without correction

- Pre-correction bias: up to +14.57‰ for δ^{18} O, up to -35.9‰ for δ^{2} H
- Post-correction uncertainties: < 0.11% for δ^{18} O, < 0.7% for δ^{2} H

- Pre-correction data **falsely suggest** colder season origin and evaporative enrichment of heavy isotopes especially for topsoil samples
- Post-correction data plausibility confirmed by similarity with local meteoric water line (solid line) and suction cup data (grey dots)

Discussion and Conclusions

Changes of carrier gas composition in environmentally relevant ranges cause changes of isotope readings exceeding accepted measurement uncertainties by two orders of magnitude

Air carrier is recommended for direct vapor equilibrium method as N₂ filling is prone to CH₄ formation **Proposed post-correction**

- restores measurement precision and accuracy necessary for observations of natural variations
- prevents misinterpretations of natural soil water isotope data
- is possible for pre-existing datasets and different equilibration times
- is possible without additional analytical capabilities and resources (e.g. GC, specialty gases)
- is even possible without exact knowledge of carrier gas composition
- is **indispensable when inconsistent background gas matrices** between samples or a mismatch in this regard between samples and calibration standards **cannot be excluded**

References

[1] Gralher et al 2016, EST doi:10.1021/acs.est.6b01124

[2] Gralher et al 2018, VZJ doi:10.2136/vzj2017.08.0157

Correspondence to:

benjamin.gralher@cep.unifreiburg.de

