Conceptual modelling to predict unobserved system states
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The case of groundwater flooding in the UK Chalk
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MOTIVATION

Chalk aquifers represent an important source of drinking water in
the UK. Due to its fractured-porous structure, Chalk aquifers are

MODELLING AND CALIBRATION APPROACH

The simulation model considers the variability of karst system properties by statistical distribution functions. That way
it simulates a range of variably dynamic pathways through the karst system. Stored water in the groundwater compart-

MODEL ADAPTION FOR PREDICTION
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After calibration and parameter identifiability analysis, the model is
applied to the period 10/1999 to 9/2005. During that period, in 2001,
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