A framework for quantification of groundwater dynamics - redundancy and transferability of hydro(geo-)logical indices

Benedikt Heudorfer ⁽¹⁾, Ezra Haaf ⁽²⁾, Roland Barthel ⁽²⁾, Kerstin Stahl ⁽¹⁾

Background

- Groundwater time series can take various shapes. Which processes cause which shape?
- We need to quantify the dynamics as a tool to understand the causes
- Numerous indices for quantification are available from literature. We selected 63 that are suitable for groundwater time series.
- All 63 indices can describe the full range of variation. But is there a exhaustive subset without redundancy?

Objectives

Select a subset of indices that:

- is able to describe a significant part of the overall variability captured by the full set of 63 indices.
- can describe all regime components, i.e. there is indices for all regime components

Indices & Concepts

check poster **A49**

Groundwater Regime			
Structure	Distribution	Shape	
Seasonality-Magnitude Seasonality-Timing Inter-annual Forcing Flashiness	Density Modality Boundness	Slope Scale	

Data

Points refer to the ~950 groundwater time series, for which the indices were calculated. Color refers to the geologc classes acording to the IGME5000 scheme.

PCA scores with redundancy

PCA = Principal Component analysis.

of the individual indices on principal component 1 and 2. Indices are grouped row-wise according to conceptual category , and column-wise according to category 2 (for explanation regarding conceptual categories see twin poster #1404 (A49).

Significant components -**Shepard Diagram**

Convergence of the relation of euclidean distance of observations in original and PCA-space approaches the 1:1 line with increasing number of principal components.

- To determine the PCA-subspace Y of original space X (see below the PLS scheme), we need to identify the number of significant components of the PCA (see above). When the scatterplot approaches 1:1 line, the subspace closely resembles original space (here at 16).

Redundancy Analysis 1 - PLS

Partial Least Squares Regression a.k.a. Projection on Latent Structures (PLS)

- The PLS method is a direct ordination method used in canonical analysis (determination of significant subset of predictors X on variables Y)
- Here it is innovatively used as selection method within indirect ordination by taking Y as the scores of the significant PCA-subspace spanned by X.
- Objectification of classical selection methods using matrix correlation of X and Y.

Scheme of the PLS method. The latent space L is the best agreement between X and Y. VIP can be performed on L.

Resulting PCA scores without redundancy

Scatterplot of the loadings of the individual indices on principal component 1 and 2 after redundancy analysis.

- However, not every category has a remaining significant index (e.g. modality & slope). These categories need to be revised.

principal component)

Redundancy Analysis 2 - VIP

- The Variable Importance in Prediction (VIP) measures the impact of every variable in X on the subspace in Y. VIP > 1 imply a gain of prediction quality and considered significant, VIP < 1 a loss in prediction quality and considered insignificant.

VIP-values for all 63 indices regarded in the study.

Conclusion

- Definite set of significant indices that explains majority of variation
- Objective approach with a minimum amount of subjectivity & no collinearity
- The results can be used to link patterns of groundwater dynamics to governing processes